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Abstract: Coronavirus disease 2019 (COVID-19) is an ongoing pandemic that was reported at the
end of 2019 in Wuhan, China, and was rapidly disseminated to all provinces in around one month.
The study aims to assess the changes in intercity railway passenger transport on the early spatial
transmission of COVID-19 in mainland China. Examining the role of railway transport properties in
disease transmission could help quantify the spatial spillover effects of large-scale travel restriction
interventions. This study used daily high-speed railway schedule data to compare the differences in
city-level network properties (destination arrival and transfer service) before and after the Wuhan city
lockdown in the early stages of the spatial transmission of COVID-19 in mainland China. Bayesian
multivariate regression was used to examine the association between structural changes in the railway
origin-destination network and the incidence of COVID-19 cases. Our results show that the provinces
with rising transfer activities after the Wuhan city lockdown had more confirmed COVID-19 cases,
but changes in destination arrival did not have significant effects. The regions with increasing transfer
activities were located in provinces neighboring Hubei in the widthwise and longitudinal directions.
These results indicate that transfer activities enhance interpersonal transmission probability and
could be a crucial risk factor for increasing epidemic severity after the Wuhan city lockdown. The
destinations of railway passengers might not be affected by the Wuhan city lockdown, but their
itinerary routes could be changed due to the replacement of an important transfer hub (Wuhan city)
in the Chinese railway transportation network. As a result, transfer services in the high-speed rail
network could explain why the provinces surrounded by Hubei had a higher number of confirmed
COVID-19 cases than other provinces.

Keywords: transfer service; COVID-19; Wuhan city lockdown; high-speed rail network; intercity
population flow; spatial transmission

1. Introduction

For a respiratory infectious disease, person-to-person contact plays a vital role in
the transmission of an epidemic, and a large population flow raises the probability of
contact between people [1–6]. An imported case of the disease could trigger a serious
local outbreak. Border control policies could be an effective measure to prevent imported
cases from causing local outbreaks. Therefore, recent studies have focused on assessing
the effectiveness of national border control policies in containing the domestic and global
spread of respiratory infectious diseases, such as body temperature screening in airports
and comprehensive travel history investigations [7–13]. Some studies have found evidence
that supports this approach because it can delay the peak of the pandemic and reduce
the number of confirmed cases; however, some have argued that the efficiency of disease
control is still limited [14]. The primary reason is that the implementation of border control
is too slow and that local transmission has already occurred by the time it is implemented.
Another reason is that the accuracy of positive detection during border screenings is too
low to efficiently differentiate infected persons because fever is not a consistent symptom
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of influenza, or symptoms may develop after arrival [15–17]. For instance, only 13.8% of
infected people were detected in Australia during the SARS epidemic [18], and only 6.6%
of imported cases were detected in Japan during the H1N1 period [17].

Due to its high transmissibility, COVID-19 is an ongoing pandemic that was reported
at the end of 2019 in Wuhan, China [19–21] and rapidly disseminated to all provinces
in around one month [22]. The virus was primarily spread through the massive annual
cross-province migration during the Spring Festival from 24 to 30 January in 2020 [23]. The
Spring Festival travel season, also referred to as Chunyun, is from 10 January to February
18 in 2020 [24]. During this period, the demand for domestic transport (railways, air
transportation, and bus systems) reaches its peak [25]; furthermore, railways are one of the
most crucial transport modes because of their high accessibility and low cost. The city of
Wuhan, which is a critical transfer hub in Chinese railway transport, has two primary inter-
city rails (the Jingguang railway and the Shanghai–Wuhan–Chengdu passenger railway)
connected to most of the major cities (e.g., Beijing, Shanghai, and Guangzhou) [26,27]. In
consideration of both the severe situation of COVID-19 and the hub characteristics during
Chunyun, the Chinese government enacted emergency measures in Wuhan city and the
surrounding cities and counties of Hubei Province on 23 January effective from 25 January
to 8 April in order to restrict all population outflows, control pandemic transmission, and
expand social distancing. Hence, the Wuhan city lockdown might have seriously affected
population flows in railway transport.

Recent studies have assessed the impacts of the Wuhan city lockdown on pandemic
transmission through time and space. By simulating different levels of travel reduction from
Hubei or Wuhan, researchers could estimate the spatial progress of the pandemic within
neighboring provinces and overseas airports before and after the Wuhan city lockdown [28].
These studies have pointed out that greater reductions in travel efficiently decreased the
development of the pandemic in the surrounding provinces or countries connected by
roads or flights. Moreover, some studies have also indicated that city lockdown policies
could delay the timing of the infection peak [29–34]. In other words, city lockdowns
controlled pandemic transmission and bought time for the healthcare system to address
the outbreaks [24,35]. Due to Wuhan’s status as an important railway hub in mainland
China, the Wuhan city lockdown has reduced many infections because of the resultant
sizable cross-province population flow changes. These studies have indicated that the
provinces bordering Hubei had a higher number of confirmed cases than other provinces,
even after the Wuhan city lockdown [24]. However, the possible reasons of a large number
of confirmed cases concentrated in the neighboring provinces of Hubei have not been
fully discussed. Therefore, this study aims to assess the changes in railway passenger
transport on the early spatial transmission of COVID-19 in mainland China. Daily railway
schedule data were used in this study to measure intercity population mobility patterns in
order to capture the impact of the Wuhan city lockdown. Examining the role of railway
transport properties in disease transmission could help quantify the spatial spillover effects
of large-scale travel restriction interventions, such as city lockdowns. It could improve our
understanding of the spatial diffusion patterns of COVID-19 during early transmission in
mainland China.

2. Data
2.1. Railway Schedule Data

To compare the changes in railway transportation before and after the Wuhan city
lockdown, we collected the daily train timetable from the official Chinese railway reserva-
tion website (https://www.12306.cn/index/, accessed on 22 January 2020) by web crawler
from 22 to 26 January 2020. Each train’s unique key is collected daily from the official
Chinese train reservation website; then, the complete train timetable of the specific train
could be fetched by the unique key and save to the local train timetable database. There
are 12 columns within train timetable data, including the day of arrival (e.g., today or
tomorrow), station name, train type, base station indicator (1 represents the first station,
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while “NaN” indicates other stations), station name of the final destination, the arrival
time of the station, base station name, train code, the day offset of arrival (0 means the
train will arrive today, while 1 indicates the train will arrive tomorrow), departure time
of this station, station index (i.e., the station index of this train), and duration (from the
previous station to this station). There are approximately 8540 timetables for each day. The
daily schedule data cover 3129 stations in 325 cities. Four fields for each record are used in
this study, including the names of the departure and destination stations, the name of the
station stops along the route, and the train code. The Chinese railway includes 10 different
train types (G, C, D, Z, T, K, S, L, Y, and N). Train types G, C, and D are cross-province
transport with high-speed trains; Z, T, and K are intercity transport with lower-speed
trains; and the rest of the train types are within-city transport. In this study, we focused on
the cross-province movement of people; therefore, two major types of high-speed trains
were incorporated into the following analyses: the D-series and G-series high-speed trains.
(Train types G and C are of the same train type; therefore, we combined them into one train
type, G.) Within the dataset collected, 32% and 42% of trains are G-Series and D-Series
High-Speed Train each day, respectively; furthermore, G-Series and D-Series High-Speed
Train cover 960 stations and 256 cities.

We further transformed the daily train tables into city-to-city origin-destination (OD)
networks to visualize and analyze the spatial patterns of intercity railway transport. The
nodes of the OD network represent each city, and the link weights represent the frequency
with which trains travel between those cities. We obtained the differences in train frequency
before and after the Wuhan city lockdown (22 January/26 January 2020) to represent the
changes in intercity passenger movement due to the large-scale travel restriction policy.

2.2. COVID-19 Cases

The reported date for each confirmed COVID-19 case was collected from summary
reports from the National Health Commission of China [36]. The data collection period
ranges from 22 January 2020 to 25 March 2020. To depict the temporal epidemic progression
in the early transmission period, we adopted the study conducted by Li, Guan, Wu, Wang,
Zhou, Tong, Ren, Leung, Lau, Wong, Xing, Xiang, Wu, Li, Chen, Li, Liu, Zhao, Liu, Tu,
Chen, Jin, Yang, Wang, Zhou, Wang, Liu, Luo, Liu, Shao, Li, Tao, Yang, Deng, Liu, Ma,
Zhang, Shi, Lam, Wu, Gao, Cowling, Yang, Leung, and Feng [19]) to estimate the date of
symptom onset for each confirmed case from symptom onset distributions and reported
date distributions in Figure 1.
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3. Methods

In this cross-sectional study, we used a daily train timetable (960 stations) to observe
the changes in intercity passenger movement (256 cities) before and after the Wuhan city
lockdown. Two network properties, PageRank and betweenness centrality were used to
quantify the structural changes in the intercity railway OD network after the Wuhan city
lockdown. The spatial distribution of intercity transportation network properties was
characterized by bivariate k function and k-nearest neighbor statistic. Eight province-
level socioeconomic indicators were considered as confounders. Bayesian multivariate
regression was used to examine the association between structural changes in the railway
OD network and the incidence of COVID-19 cases.

3.1. Structural Changes in Intercity Railway Transport

Wuhan is an important railway hub during Chunyun; thus, the Wuhan city lockdown
substantially affected the cross-province population flow. This could be reflected in the
structural changes to the intercity railway OD network. We used network centrality metrics
to measure the nodal properties of the OD network, including PageRank centrality, which
represents the destination arrival probability (DAP), and betweenness centrality, which
reflects the potential for transfer activity (PTA) for each city.

PageRank centrality (PR) measures the probability that a person randomly clicks on a
particular link from anywhere; hence, a higher value indicates higher importance [37,38].
The definition of the PR of a particular city Ci is as follows:

PR(Ci) = ∑
Cj∈M(Ci)

PR
(
Cj
)

L
(
Cj
) , (1)

where M(Ci) is the set of cities that connect to city Ci, and L
(
Cj
)

is the number of outbound
connections with city Cj. The recursive equation starts with rank PR

(
Cj
)

and then stops
the iteration when it converges. PageRank represents the staying probability of a particular
city when starting from any city in the railway OD network. Thus, we use this metric as an
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indicator to evaluate the DAP of the city. A higher value of the DAP represents a higher
probability of staying in that specific city [39].

Betweenness centrality (BC) indicates the ratio of the number of shortest paths through
a particular city to the total number of shortest paths between two given cities in the entire
city network as follows [40,41]:

BC(Ci) = ∑
k 6=i 6=j∈N

σkj(i)/σkj, (2)

where σkj is the total number of shortest paths between city Ck and city Cj, and σkj(i) is the
number of shortest paths through a particular city Ci. Betweenness centrality is adopted
to measure the PTA of the city because a higher betweenness centrality value stands for a
higher number of transfers passing through the city [42,43].

We then used spatial statistics to compare the spatial patterns in the nodal metrics
(PageRank and betweenness centrality) before and after the Wuhan city lockdown. A city
with rising nodal metrics represents that city becoming a more influential node in the
railway OD network after the Wuhan city lockdown. In contrast, a city with declining
nodal metrics represents that city becoming a less influential node. The bivariate k function,
a spatially summarized statistic, is used to evaluate the spatial clustering of cities with
declining nodal metrics around cities with rising ones [44]. The k-nearest neighbor (kNN)
statistic is used to assess the spatial proximity between cities with rising and declining
nodal metrics [45,46].

3.2. The Association between Intercity Transportation Network Properties and the Number of
Confirmed COVID-19 Cases

The changes in nodal metrics in the railway OD network could alter the contact prob-
abilities within intercity population flows, which may influence the temporal progression
of the COVID-19 epidemic. The changes in nodal metrics, PageRank, and betweenness
centrality were aggregated into the province level, as were the destination arrival and trans-
fer service statistics, respectively. Bayesian multivariate regression was used to measure
the province-level association between the changes in the nodal metrics and the incidence
of COVID-19 cases. The province-level socioeconomic indicators are incorporated as
control variables in the regression model. These confounders include three dimensions:
demographics, economics, and healthcare conditions. The variables in the demographics
dimension include the total household population, the resident population percentage
(the percentage of people who live in a specific area for six months or more), and the
percentage of the household population living in other provinces (the proportion of the
difference between the total population and the resident population). The variables in
the economics dimension include the average gross domestic product (GDP) per capita.
The variables in the healthcare conditions dimension consist of life expectancy, average
local health expenditure per person, birth insurance coverage, and average birth insurance
expenditure. All data are from the National Bureau of Statistics of China [47–49].

To avoid collinearity among the predictor variables, principal component analysis
(PCA) was conducted to reduce the dimensions of the socioeconomic indicators by ex-
tracting the principal components. PCA is a statistical method used to obtain principal
components from observations through orthogonal transformation. The first principal
component (PC) can be regarded as the greatest amount of variance that can explain the
most variance in the observations. To prevent the biased estimation of model parameter
coefficients due to a small sample size (n = 28), a Bayesian multivariate regression is applied
to estimate the effect of changes in nodal metrics on the incidence of confirmed COVID-19
cases by controlling for the PCs of the socioeconomic indicators. PCA and the Bayesian
linear regression were performed by the R packages BAS 1.5.5 and STATS 3.6.2.
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4. Results
4.1. Descriptive Statistics

Figure 2 shows the daily number of G-series and D-series high-speed trains that
stopped in Wuhan/Hubei, ranging from 19 January to 2 February 2020. When the city
lockdown took effect, the number of each type of train dropped sharply. Within the
dataset used, each day, 32% and 42% of trains are G-series and D-series high-speed trains,
respectively; furthermore, G-series and D-series high-speed trains cover 960 stations in
256 cities. A significant decrease in the frequency of D-series trains centered on Wuhan city
and extended widthwise (e.g., toward Shanghai, Jiangsu, Anhui, Hubei, Chongqing, and
Sichuan) and in longitudinal directions (e.g., toward Beijing, Henan, Hubei, Hunan, and
Guangdong), which is shown in Figure 2a. The frequency of trains between Guangdong
and its surrounding provinces (e.g., Fujian, Yunnan, Guizhou, and Sichuan) also decreased.
For G-series trains (Figure 2b), the decreasing pattern extended in a longitudinal direction
(Beijing, Shandong, and Fujian) and two widthwise directions (Shanghai, Henan, and
Shaanxi; and Zhejiang, Hunan, and Guizhou). Figure 2c shows that the Wuhan city
lockdown mainly affected Hubei, Jiangsu, Chongqing, Jiangxi, and Anhui for the D-series
high-speed trains. The major provinces affected by the G-series high-speed trains were
Hubei, Henan, Shandong, Anhui, and Jiangsu (Figure 2d).
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where (a) D-series and (b) G-series high-speed trains are shown at the city scale. Blue represents decreased train frequency,
and red represents increased frequency. The longitudinal railway is the Jingguang railway (green line), and the widthwise
railway is the Shanghai–Wuhan–Chengdu railway (green line). The province-level changes for the (c) D-series and
(d) G-series high-speed trains are shown to identify the routes most affected by the Wuhan city lockdown.

4.2. The Changes in Nodal Metrics

Figure 3a,b shows the spatial patterns in the changes in DAP. The declining DAP
pattern occurs in the major cities lying on the widthwise Shanghai–Wuhan–Chengdu
railway (see Figure 2a,b) for the D-series trains. For the G-series trains, a declining DAP
pattern occurs in the longitudinal cities along the Jingguang railway (see Figure 2a,b). The
declining DAP pattern in the G-series and D-series is consistent with the train frequencies
in the railway OD network and shows that the cities with rising DAP surround the cities
with declining DAP. Figure 3c,d shows that neither the declining nor rising PTA patterns
for the G-series and D-series trains follow a railway route. Most of the cities with declining
PTAs are primary cities in mainland China, such as Beijing, Shanghai, and Guangdong.
Additionally, the spatial distribution of cities with declining and rising PTA has a pattern
similar to that of the distribution of declining and rising DAP.
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DAP changes in D-series trains; (b) the DAP changes in G-series trains; (c) PTA for D-series trains; (d) PTA changes for
G-series trains.

4.3. Spatial Patterns in the Nodal Metrics Before and After the Wuhan City Lockdown

Figure 4 represents the results of bivariate spatial analysis, showing spatial clustering
patterns of the nodal metrics. It indicates that the cities with declining nodal metrics were
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significantly clustered near the cities with rising metrics for all types of high-speed trains
and nodal metrics. Then, the median distance between the k-nearest city with rising railway
network properties and that with declining railway network properties is presented in
Figure 5. The results show that the distance between the two types of cities was larger when
considering changes in PTA than changes in DAP for both types of high-speed trains, and
they show that the extent of the impact on transfer services is geographically larger than
that on destination arrivals. Taking D-series high-speed trains as an example, the distances
from the cities with declining DAP and PTA to the 3rd nearest city with rising DAP and
PTA were 146.2 km and 258.5 km, respectively. The gray area is the 95% confidence interval
according to the Ktheo

D,R value.

Figure 4. The results of the bivariate k function representing a significant spatial clustering tendency of cities with declining
railway network properties around cities with rising properties. The network properties include the potential for transfer
activity (PTA) for (a) D-series high-speed trains and (b) G-series high-speed trains and destination arrival probability (DAP)
for (c) D-series high-speed trains and (d) G-series high-speed trains.
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4.4. The Effect of Changes in Nodal Metrics on COVID-19 Transmission
4.4.1. Spatial Distribution of Nodal Metrics

Figure 6a,b shows the spatial changes in destination arrival (DAP) and transfer service
(PTA) after the Wuhan city lockdown. These results show that after the Wuhan city
lockdown, most provinces had rising DAP, and the provinces with rising PTA were around
Hubei Province, including the widthwise provinces from Zhejiang to Qinghai and the
longitudinal provinces from Shanxi to Guangxi. This result indicates that the Wuhan
city lockdown caused rising destination arrival and high levels of transfer service in
neighboring provinces during the early COVID-19 transmission stages.

4.4.2. Clarification of the Role of the Frequency of Transfer Activities in
COVID-19 Transmission

Figure 7 shows the proportion of variance explained by eight PCs obtained by PCA.
The first three PCs were selected for our regression model because they explain 92% of
the variance. According to the variable loadings in Table 1, the first principal component
(PC1) was mainly dominated by the resident population percentage. The second principal
component (PC2) was driven by the average local health expenditure per person. The total
household population and life expectancy represented the third principal component (PC3).
Hence, PC1, PC2, and PC3 captured the dimensions of floating populations, healthcare
availability, and general demographics, respectively.
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Table 1. The variable loadings for each principal component.

Confounding PC1 PC2 PC3

Household population 0.09 −0.53 −0.77
Resident population percentage 0.42 −0.16 0.27

Percentage of the household population in
other provinces −0.42 0.16 −0.27

GDP per capita −0.41 −0.24 0.11
Life expectancy −0.26 −0.51 0.44

Average local health expenditure per person −0.24 0.57 −0.13
Birth insurance coverage −0.41 −0.16 −0.08

Average birth insurance expenditure −0.42 −0.05 0.13

The Bayesian regression models evaluate the impact of destination arrival and transfer
services on the incidence of confirmed COVID-19 cases, as shown in Tables 2 and 3,
respectively. The R2 of destination arrival and transfer services models are 0.49 and 0.60,
respectively; thus, the transfer services model could explain more proportion of variance
than the destination arrival one. The results indicate that destination arrival service
does not have a significant impact on the incidence of confirmed COVID-19 cases after
controlling for the PCs of the socioeconomic indicators; however, transfer service does
have a significantly positive effect on early COVID-19 transmission after the Wuhan city
lockdown. In other words, transfer activities could promote the spread of COVID-19. Our
results also reveal that healthcare availability has a negative effect on the incidence of
confirmed cases, while the total population of the province (PC3) has a positive effect
(negative regression coefficient and negative PC variable loadings), which means a large
population could be regarded as a risk factor for disease transmission. Corresponding to
the results of spatial analyses, the neighboring provinces of Hubei with a high number
of confirmed cases have a high transfer service score, including Anhui, Jiangxi, Hunan,
and Chongqing. The provinces with a low average local health expenditure per person, a
short life expectancy, a high household population result in a high number of confirmed
cases, such as Henan, Guangdong, Hunan, Zhejiang, Shandong, Jiangsu, and Sichuan.
Nevertheless, the top five provinces (Henan, Anhui, Guangdong, Jiangxi, and Hunan) with
severe COVID-19 epidemics are captured via this model.
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Table 2. The regression coefficients of destination arrival service and principal components of the
socioeconomic indicators in the Bayesian multivariate model.

Variables Mean SD 2.5% 97.5% p
(β 6= 0)

Intercept 96.07 12.13 71.69 121.48 1.00
Destination arrival service −835.76 2532.82 −9101.57 1831.27 0.26
Resident population (PC1) 0.76 3.00 −3.84 9.78 0.24

Healthcare availability (PC2) −34.72 8.85 −53.23 −16.92 1.00
General demographics (PC3) −34.28 18.77 −64.21 0.00 0.88

Mean and SD indicate the average and standard deviation of the posterior distribution of each variable. P (β 6= 0)
is the marginal probability that a coefficient is nonzero.

Table 3. The regression coefficients of transfer service and principal components of the socioeconomic
indicators in the Bayesian multivariate model.

Variables Mean SD 2.5% 97.5% p
(β 6= 0)

Intercept 96.07 11.10 74.29 119.52 1.00
Transfer service 2025.33 1319.49 0.00 4160.11 0.82

Resident population (PC1) −1.15 3.93 −13.27 5.00 0.31
Healthcare availability (PC2) −36.71 8.54 −53.82 −20.02 1.00
General demongraphics (PC3) −40.25 16.80 −65.75 0.00 0.94

Mean and SD indicate the average and standard deviation of the posterior distribution of each variable. P (β 6= 0)
is the marginal probability that a coefficient is nonzero.

5. Discussions

High-speed trains can be regarded as a major tool used for cross-province transporta-
tion during Chunyun in mainland China. Therefore, high-speed railway schedules could
capture cross-province movement patterns. With limited data sources, including COVID-19
reported cases from open data platform and daily high-speed railway schedule by the web
crawler, this study compared the differences in city-level network properties (destination
arrival and transfer service) before and after the Wuhan city lockdown in the early stages
of the spatial transmission of COVID-19 in mainland China. Our results show that the
regions with increasing transfer activities had significant numbers of confirmed infected
cases, and these regions were located in provinces neighboring Hubei in the widthwise
and longitudinal directions. These results indicate that transfer activities enhance the
probability of interpersonal transmission and could be a crucial risk factor for increasing
epidemic severity after the Wuhan city lockdown. Our study provides another possible
pathway to explain why the provinces surrounded by Hubei had a higher number of
confirmed COVID-19 cases than other provinces.

In pandemic transmission, considering the network connectivity of a person is crucial
because it could reflect the frequency or probability of that person contacts others. Hence,
several network indicators have been widely used to measure the network connectivity
characteristics of each person and have revealed the associations between network con-
nectivity measures, such as degree centrality, PageRank, and betweenness centrality, and
pandemic transmission [50–54]. Degree centrality is used to measure the number of per-
sons connected to the specific person, and so a high value indicates that this person most
likely infected others because he or she can reach more people than others can. Previous
studies have reported that a high level of degree centrality is positively related to disease
incidence [51,55]. However, degree centrality only includes the first-degree neighbors
connected to the specific person, and it cannot account for other neighbors who are not
directly connected to that person. PageRank takes account not only of all the people in
the network but also of the direction and weight of the connection between one person
and another [53]. Betweenness centrality represents the mediation property of each person
in the network. Previous studies have reported that people with high mediation have
greater infection potential due to increased contact with various people [56,57]. Different
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from previous studies, our results show no relationship between the changes in PageRank
centrality and early COVID-19 transmission, but the changes in betweenness centrality are
significantly related to the incidence of confirmed COVID-19 cases after the Wuhan city
lockdown. Two factors could explain this. First, the destinations for most railway passen-
gers were tier 1 or 2 cities (as measured by the Chinese government’s official city ranking),
such as Beijing, Guangdong, or Henan [28]. In addition, travelers usually targeted their
hometowns as destinations during Chunyun. Hence, transfer service changes could better
explain early COVID-19 transmission than destination arrival service changes. Second,
we measured changes in nodal metrics; if a region was not affected by the Wuhan city
lockdown, it did not show significant changes. In other words, Wuhan and other cities in
Hubei provided railway passengers with a transfer hub, not a destination; therefore, the
Wuhan city lockdown did not affect the destination of railway passengers but changed
their itinerary routes to their destination. As a result, understanding the effect of transfer
services plays an essential role in understanding early COVID-19 transmission.

The definitions of PageRank and betweenness centrality, two network indicators, were
used in this study to measure the properties of destination arrival [53,58] and transfer
activities [39,42,43]. Our results show that the impact of transfer activities on early COVID-
19 transmission was more significant than that of destination arrival. Some regions usually
have few transfers; however, those regions provided more transfer services after the Wuhan
city lockdown due to the closure of the critical transfer hub of Wuhan during Chunyun.
The more people gathered in these regions, the higher the contact probability with various
people becomes. A similar result for airport networks has been reported in Gardner and
Sarkar [59]). They addressed the fact that transfer passengers are a vital element to monitor
in order to avoid disease transmission, especially for airport surveillance. Uninfected
passengers could be infected because they contacted infected people during transfers at
the airport [6]. Our results further illustrate that the provinces neighboring Hubei had a
rising PTA after the Wuhan city lockdown, and remarkably, individuals in these provinces
had a greater probability of contact with infected persons than those in provinces with a
declining PTA. This indicates that provinces neighboring Hubei provided partial transfer
functionality after the Wuhan city lockdown and explains why those provinces had a larger
number of confirmed cases.

The demographic, economic, and healthcare dimensions have been reported to play
critical roles in pandemic transmission [48,49]. Our results show that transfer activities
and the total population had positive impacts on COVID-19 transmission, whereas the
resident population percentage and healthcare availability had negative impacts. A large
population with a low resident population suggests that the spread of the infection might
be driven by people who work in other regions. This implies that most of the workers and
students returned to their hometowns during Chunyun, and the number of people and
their contact probability in these regions quickly increased. Those provinces with a low
GDP per capita, a low level of average birth insurance expenditure, and life expectancy
have a higher number of infections, indicating that a lack of healthcare resources increased
the incidence of confirmed cases [60]. Moreover, a high total household population might
indicate high contact probabilities, while low average local government expenditures
might indicate that more time is required to respond to the pandemic [61]. In addition to
transfer activity, we further reveal that other risk factors in early COVID-19 transmission,
such as a high total household population, low resident population, low GDP, low birth
insurance expenditure, low average local government expenditure on healthcare, and short
life expectancy, might increase pandemic transmission.

This study has several limitations. First, city-level socioeconomic indicators were not
incorporated in our regression models. Thus, the characteristics of local transmission within
a city could be overlooked in our study. The findings of this study reflect the impact of high-
speed railway transport on cross-province COVID-19 transmission. Second, due to a lack of
symptom onset data for each confirmed case, we estimated the symptom onset of cases from
the published literature. This could lead to a biased temporal trend in estimates regarding
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early transmission in mainland China. Third, trains usually carry many passengers during
Chunyun; therefore, the number of trains scheduled between two cities was used to
represent population flows. It may not reflect the actual volume of passengers. Fourth, not
only is high-speed rail transport important but air and road transport are also important
cross-province transportation tools during Chunyun. Further investigation is warranted
to incorporate more transport modes. Fifth, city-level transfer services were conducted
through city-to-city network structures. These network indicators may not capture the
actual behaviors of individual railway passengers. Sixth, although this study demonstrates
the province-level association between transfer services and the COVID-19 epidemic
in the early stages of transmission, it cannot infer individual-level infection risks from
transfer behaviors. Last but not least, the spatial heterogeneity of population flow plays an
important role in the geographical process of epidemic transmission. Therefore, it could be
warranted to use geographically weighted regression to explore spatial heterogeneity of
the COVID-19 epidemic in future studies.

6. Conclusions

The impact of the Wuhan city lockdown on railway transportation was measured by
destination arrival and transfer activities using city-to-city network metrics, including the
PageRank and betweenness centrality scores. Our results show that the provinces with
rising transfer activities after the Wuhan city lockdown had more confirmed COVID-19
cases, but changes in destination arrival did not have significant effects. This implies that
the destinations of railway passengers might not be affected by the Wuhan city lockdown,
but their itinerary routes could be changed due to the replacement of an important transfer
hub (Wuhan city) in the Chinese railway transportation network. We conclude that transfer
services in the high-speed rail network could be another possible explanation for why the
provinces surrounded by Hubei had a higher number of confirmed COVID-19 cases than
other provinces.
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